Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Li-Rong Wen, ${ }^{\text {a* }}$ Ming Li, ${ }^{a}$ Zi-Qin Ke ${ }^{\text {b }}$ and Xiao Wang ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Xinjiang Normal University, Urumuqi 830054, People's Republic of China

Correspondence e-mail: wenlirong@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.138$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Amino-1-(1,5-dimethyl-1 H-pyrazol-4-ylcarbonyl)-3-methylsulfanyl-1H-1,2,4-triazole

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{OS}$, the pyrazole and triazole rings are nearly coplanar, forming a dihedral angle of 6.50 (9) ${ }^{\circ}$. There are $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen-bond interactions in the crystal structure, providing stabilization.

Comment

Many pyrazole and triazole derivatives have been reported to show various biological activities, such as antifungal (Chen \& Li, 2000), herbicidal (Ren et al., 2000), insecticidal (Huang et al., 1996) and other activities (Kopp et al., 2001). Thus, we paid special attention to the possibility of obtaining a pyrazole ring connected to a triazole ring via a carbonyl group. In order to develop new biological activities, we synthesized the title compound, (I), the structure of which is reported here.

(I)

Bond distances and angles (Table 1) are as expected for this type of compound. The pyrazole and triazole rings are nearly coplanar, the dihedral angle between them being $6.50(9)^{\circ}$. A weak intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interaction is observed (Table 2). In the crystal structure, centrosymmetrically related molecules are linked in dimers through the formation of intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions (Table 2).

Experimental

A mixture of 1,5 -dimethylpyrazol-4-ylcarbonyl hydrazide (3 mmol) and CIDT (N-cyanoimido- S, S-dimethylthiocarbonate) (2 mmol) in acetonitrile (15 ml) was refluxed for 8 h (monitored by thin-layer chromatography) until a solid product formed; the solution was cooled and the product filtered off. The pure product was isolated by recrystallization from dimethylformamide (m.p. 514 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{OS} \\
& M_{r}=252.31 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=7.642(5) \AA \AA \AA \\
& b=10.100(7) \AA \AA \\
& c=15.250(10) \AA \\
& \beta=101.275(8)^{\circ} \\
& V=1154.3(13) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.458 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2811
reflections
$\theta=2.4-27.8^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.59 \times 0.38 \times 0.20 \mathrm{~mm}$

Received 1 March 2005 Accepted 30 March 2005 Online 9 April 2005

Figure 1
View of the title compound, with 35% probability ellipsoids.

Data collection

Bruker APEX II CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.882, T_{\text {max }}=0.946$
5982 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.138$
$S=1.08$
2024 reflections
158 parameters
H -atom parameters constrained

2024 independent reflections
1763 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 8$
$k=-12 \rightarrow 10$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.088 P)^{2}\right. \\
&+0.3815 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

O1-C6	1.221 (3)	N5-C9	1.313 (3)
N1-C4	1.336 (3)	N5-C7	1.376 (3)
N2-C1	1.320 (3)	N6-C9	1.333 (3)
N3-C9	1.388 (3)	C1-C5	1.412 (3)
N4-C7	1.307 (3)	C4-C5	1.395 (3)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{N} 2$	113.28 (17)	N2-C1-C5	111.94 (19)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	104.29 (17)	N1-C4-C5	106.22 (18)
C9-N3-N4	108.46 (15)	C4-C5-C1	104.27 (19)
$\mathrm{C} 7-\mathrm{N} 4-\mathrm{N} 3$	101.66 (16)	N4-C7-N5	116.75 (19)
C9-N5-C7	103.03 (18)	N5-C9-N3	110.08 (17)

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H6B \cdots O1	0.89	2.23	$2.695(3)$	112
N6-H6A $\cdots 5^{\mathrm{i}}$	0.89	2.09	$2.961(3)$	163

Symmetry code: (i) $-x, 1-y, 1-z$.

Figure 2
The molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.89 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})$ set at $1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2}, and $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$ for NH, CH and $\mathrm{CH}_{3} \mathrm{H}$ atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the Natural Science Foundation of Shandong Province (No. Y2003B01).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, H. S. \& Li, Z. M. (2000). Chin. J. Chem. 18, 596-602.
Huang, R. Q., Song, J. \& Feng, L. (1996). Chem. J. Chin. Univ. 17, 1089-1091. Kopp, M., Lancelot, J. C., Dallemagne, P. \& Rault, S. (2001). J. Heterocycl. Chem. 38, 1045-1050.
Ren, T. R., Yang, H. W., Gao, X., Yang, X. L. \& Zhou, J. J. (2000). Pest. Manag. Sci. 56, 218-226.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

